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New Explicit Expressions for the Coupling Matrix

Elements Related to Scattering from a Planar

Periodic Single-Strip Grating
Dragan N. Filipovi6

Abstract— Thk paper presents an alternative approach for

finding elements of the coupling matrix in the multimode equiva-
lent network that describes plane-wave scattering from a planar

periodic single-strip grating at a dielectric interface. After solving
a Fredholm integral equation of the first kind whose kernel

has a logarithmic singularity, the coupling matrix elements are
obtained in an explicit analytical form, thus avoiding numerical
integration. Numerical computations are carried out and the

results are compared to some of the existing ones.

I. INTRODUCTION

A

RIGOROUS multimode network formulation for the

problem of TE or TM plane wave scattering from a

planar periodic metal-strip grating at a dielectric interface is

proposed in [1]. ln that formulation the grating is represented

by a mutual coupling matrix which does not depend on angle

of incidence and frequency, except for a multiplying constant.

The incident wave as well as reflected and Kansmitted space

harmonics are modeled by transmission lines which connect

into the mutual coupling matrix. This matrix is in the form

of an impedance matrix for the aperture formulation in which

the electric field between the strips is chosen as the unknown.

Alternatively, in the case of the obstacle formulation, where

current on the strip is the unknown, the coupling matrix

has the form of an admittance matrix. In addition to these

two formulations there are two possible wave polarizations,

transverse electric (TE), and transverse magnetic (TM), so that

four combinations can be made. In each of these combinations,

the coupling matrix elements are different, but are always

related to an integral over the grating unit cell of an unknown

function which is to be found from an integral equation.

This integral equation has one particular form for the TM-

obstacle and TE-aperture cases, and a different form for the

Thlaperture and TE-obstacle cases. An approximate small-

argument solution for each of the four possible cases was

given in [2].

A novel rigorous solution of the integral equation for

the cases of TM-obstacle and TE-aperture formulations was

proposed in [3]. The method of the solution was to reduce

the integral equation for these two formulations to a singular

Cauchy-type integral equation, which has a known solution.

From this, the coupling matrix elements were found in the

form of double integrals that have to be evaluated numerically.
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Fig. 1. A planar periodic single-strip metal grating at a dielectric interface.
A plane wave is incident at an angle. Both polarizations are considered.

In [4], the method of [3] is extended to the case of a double-

strip grating. Although the method is basically the same as for

a single-strip grating, it is mathematically more involved.

In this paper we use the multimode network representation

derived in [1], for the problem of TE or TM plane wave

scattering from a planar periodic single-strip grating at a

dielectric interface. However, to find the coupling matrix

elements the alternative approach is chosen, i.e. the starting

integral equation is the one for TE-obstacle and TM-aperture

formulations. It is a Fredholm-type equation of the first kind,

whose kernel has a logarithmic singularity. It is known [5]

that an equation of this type has a closed-form solution. After

solving the integral equation the coupling matrix elements

&n are obtained in a Simple analytical form. Therefore, no

numerical integration is needed, as opposed to [3].

To check the validity of this approach some computations

have been carried out and the results are compared to those

of [3].

II. THE EQUIVALENT NETWORK REPRESENTATION

AND THE CORRESPONDING INTEGRAL EQUATION

Geometry of the problem under consideration is shown in

Fig. 1. A plane wave is incident at an angle 0 upon a planar

periodic zero-thickness single-strip grating at a dielectric inter-

face. The grating has period p, the distance between the strips
(1) (1)

is a, and the parameters of media (1) and (2) are G. , ~r

and CP), ~~) respectively. The polarization can be either TE

or TM to Z. The rigorous equivalent networks, derived in [1]

for the cases of TE-obstacle and TM-aperture formulations are

shown in Figs. 2 and 3 respectively. The quantities in these
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Fig. 2. The rigorous equivalent network for the case of TE-obstacle formu-

lation.
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Fig. 3. The rigorous equivalent network for the case of TM-aperture for-

mulation.

figures are [1]

The coupling matrix elements Amn (representing admittances

Y~n in the case of TE-obstacle formulation, and impedances

Zn. in the case of TM-aperture formulation) are to be found

from

J
●b/2

A m,n = fn(z)e~%z d.z.
–b/2

(1)

The unknown function ~n (z) which appears in (1) satisfies

the following integral equation

/

~b/2 m e–j~(z–zj)

fn(z’) ~ B
\rn

dz’ = e-~?z (2)
–b/2 m=o

where

{

&.&g 1
2T J- for TE-obstacle formulation

B=
*p) +$

(

(1)
W& Er

+ J2)

)
for TM-aperture formulation

In (1) and (2) b = a for the TM-aperture formulation (the

origin is in the center of the aperture), and b = p – a in the

case of TE-obstacle formulation (the origin in Fig. 1 is then

shifted to the center of the strip).

III. SOLUTION OF THE INTEGRAL EQUATION ~ ~ EXPLICIT

EXPRESSIONS FOR THE COUPLING MATRIX ELEMENTS

By using the formula

m COS(7W)= In 1
Em

1

21sin(,z/2)1 = 1n2sin(lzl/2)m=l

which is valid for 0< .z < 27r, (2) can be rewritten as

/

+b/2

2B fn(~’) in sinn~_z,[ d.z’ = e-~%z. (3)
–b/2 2

A change of variables

puts (3) into the following form

/

+A 1
~n(f’)lnsi” I&_&/l d~’ = qn(f) (4)

–A 2

where

()
F.(C) = +fn g (5)

A=~. (7)
P

Equation (4) is a Fredholm-type integral equation of the first

kind whose kernel has a logarithmic singularity. It is known

[5] that an equation of this type has a closed-form solution

cos(f/2)
‘m(~) = – ~ lnsin~A/2) ~COS~ – COSA

/

A

x _A %( f’) cOs(&’/2) &
~cos~ – COSA

1 1
—

21r2 ~cos< – COSA
V.p.

/

A

x P:((’) d C;;’A d<’
–A 2

(8)

where the symbol v.p. stands for the principal value.

The substitution of qn (~) from (6) into (8), and the sub-

sequent evaluation of the integrals (which is given in the

appendix) leads to

F.(f) = –--J---- 1 cos(&/2)

271-W lnsin(A/2) /cos& – COSA

x (P.(u) + Pn.l(u)) + + Cost:Cosj[

{

–>: P-n-p(u)e’c(’+1/2) n < _l
x

5 Pn--p(u)e-’~+l+ 2)2) ~ > ~ “
(9)

p=o
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Fig. 4. The transmitted power in the lowest (n =0) mode versus the relative
period for the case of TE-incidence. The parameters are taken to be: a/p =

0.50 =15°, e~) = 2 and 6:) = A:) = fl~) = 1. The network used is

the one shown in Fig. 2.

Here, l’k are the Legendre polynomials, and Ok are related to

the Legendre polynomials and are given in the appendix. The

argument of pk and p~ is u = cos A. Note that the second

integral in (8) is equal to zero for n = O.

Now, the coupling matrix elements can be obtained as

follows: First, make a change of variables in (1) and (2)

Tz/p = [

Then, taking into account (5) and (7)

A

AL
/

wn = ~B _~ Fn(~)e~rnC d(

Substituting here the function Fn (~) from (9), and using the

Dirichlet formula [6] for the Legendre polynomials

/j oCOS(rL + 1/2)$9 dv
— L (lo)

7r~ Cosp – co%’

and the relation [6]

pk(~) = P-k-l(u)

one obtains the final expression for the coefficients Am,n

A

1

1 (Pn(u) + Pn_~ (u)) (Pm(u) + Pm-l(u))

“n = 2B 41nsin(A/2)

{

‘~~OP-.-P(~)P~+p(~) n <-1

+n

I
$, Pn-P(~)p-m+p(~) ~ 21 “

(11)

Thus, the coupling matrix elements are found in a simple

explicit analytical form.
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Fig. 5. Same as Fig. 4 bnt for TM-incidence. The network used is the one
from Fig. 3.

IV. NUMERICAL RESULTS

In order to check the validity of this approach to plane

wave scattering from a planar periodic single-strip grating at

a dielectric interface, some numerical computations have been

carried out.

The transmitted power in the lowest (n = O) mode versus

the relative grating period p/Ao, for the case of TE-incidence

is shown in Fig. 4. The relevant network is the one in Fig. 2,

and the parameters from Fig. 1 have the following values: d =

Fig. 5 shows the transmitted power in the lowest mode

versus the relative period in the case of TM-incidence,with

the same parameter values. The equivalent network used is

shown in Fig. 3.

In these computations modes of order up to +6 have been

included. As expected, the results are identical to those in [3].

The corresponding curves are indistinguishable.

V. CONCLUSION

Starting from the multimode network representations for

the problem of plane wave scattering from a planar peri-

odic single-strip zero-thickness metal grating at a dielectric

interface, new simple explicit expressions for the coupling

matrix elements have been obtained. Therefore, no numerical

integration is needed to obtain values of these elements.

The relevant integral equation to solve was a Fredholm-type

equation whose kernel has a logarithmic singularity. A closed-

form solution for this equation is presented.

APPENDIX

In this appendix we evaluate the two integrals appearing in

(8). The first one is given by

/

.4 ~–w<’cos((’/2) d<’ _

~(Pn(cosA) + ~n-I(COSA)).
–A ~cos~ – COSA — &

(Al)

[n deriving (Al) the Dirichlet formula (10) and the trigono-

metric identity cosacosb = (1/2) (cos(a + b) + cos(a – b))

were used.
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The other integral in (8) which is understood in the sense

of principal value can be evaluated by means of residues from

complex function theory.

First, the sine and cosine terms under the integral sign

are transformed by using Euler’s formula and a change of

variables

is made to give

/

A –jne–~n& ~cos<l – COSA
V.p.

si~’$–~
d<’

–A 2

J’d

(z - a)(z - a“) dz ~A3)
—– –jnfi&v.p.

r .z~+l(z – ‘@)

where a = e~A and * implies complex conjugate value. The

contour of integration r is the arc of the unit circle Iz I =

1 between the points z = ~“ and z = a. The square root

function is a two-valued function with two branch points
~=~~d~=~*. By making a cut along the unit circle

between the branch points this function becomes analytical

and single-valued, the branch being specified by the condition

w(0) = +1. The contour of integration 17goes along the inner

lip of the cut. Let I“ be the closed contour going along the

inner and outer lips of the cut in the clockwise direction. Then,

the integral along 17is equal to one half of the integral along IY,

since the square root changes sign on the outer lip of the cut.

But, the integral along the closed contour I“ can be evaluated

by means of the residues at the two singular points z = O and
,Z = CO. Therefore, (A.3) can be written as

IA –jne–~n~’ ~cos(’ – COSA
V.p. d<’

–A sin ~

where ~(z) is the function under the integral sign on the

right-hand side of (A3).

To find the residues at z = O and z = cm the function ~(z)

has to be developed into the Laurent series in the vicinity of

these two points, i.e. for I.zl < IZol = 1 and for I.zl > Izol = 1.

First, note that the function [(.z – Q) (z – a“ )] ‘1/2 where
— ~~A is the generating function for the Legendre

~olynomials [6]

[(z - a)(z - es*)]-1/2= ~ Pn(cosA)zn, I.z’l <1.

n+)

Inverting the power series in the last relation gives

[(z - a)(.z - CY*)]l/2= ~ pn(cosA)zn, IzI <1 (A5)
fi=o

where

PO(COSA) = 1, ~1 (COSA) = –COSA

~n(cosA) = P.(cosA) – 2cosAPn_l (COSA)

+ Pn_2(cosA), n 22.

In the case Izl > 1 one may replace z in (A5) by l/z. The

result is
cc

[(.z - a)(.z - cs*)]l/2= -z ~ pn(cosA)z-n, Izl >1.

The minus sign comes from the fact that the square root

changes sign across the cut. Also

{

-p~oz;+’, Izl <1

(z - ‘q)-’ = (A7)
E 2$2-P-1, Izl >1 “

p=o

Now the Laurent expansions of the function ~(z) follow from

(A5), (A6) and (A7)

f(,z) = J (z - CY)(.Z- Q*)

.N+l(.z – Zo)

-{

–~ ~ @-lzP ~ ~k(cosA)z~, 121<1

p+ k=O—

–*
~ Z& Z-p-’ k:op~(cosA)z-k, I,z > I “

p=o

(As)

The residue of the function f(z) at z = O is the coefficient of

z–l in the Laurent series (A8) for I,zI < 1. It is

(
n<–1

Resf(o)= – ~ ~n_pjOSA),Z;Z’-l, n,>O “
(,A9)

&l=(l

The residue of f(z) at the point z = co is the coefficient of

z – 1 in the Laurent series (A.8) for Iz I > 1 with the opposite

sign

IyP-.-P(cosA)%, n S -1
Resf(ca) = ~=o ~ n=o “

(Ale)
>

( 0, n>O

Finally, (9) is obtained from (8), (Al), (A2), (A4), (A9) and

(A1O).
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