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New Explicit Expressiohs for the Coupling Matrix
Elements Related to Scattering from a Planar
Periodic Single-Strip Grating

Dragan N. Filipovié¢

Abstract— This paper presents an alternative approach for
finding elements of the coupling matrix in the multimode equiva-
lent network that describes plane-wave scattering from a planar
periodic single-strip grating at a dielectric interface. After solving
a Fredholm integral equation of the first kind whose kernel
has a logarithmic singularity, the coupling matrix elements are
obtained in an explicit analytical form, thus avoiding numerical
integration. Numerical computations are carried out and the
results are compared to some of the existing ones.

I. INTRODUCTION

RIGOROUS multimode network formulation for the

problem of TE or TM plane wave scattering from a
planar periodic metal-strip grating at a dielectric interface is
proposed in [1]. In that formulation the grating is represented
by a mutual coupling matrix which does not depend on angle
of incidence and frequency. except for a multiplying constant.
The incident wave as well as reflected and transmitted space
harmonics are modeled by transmission lines which connect
into the mutual coupling matrix. This matrix is in the form
of an impedance matrix for the aperture formulation in which
the electric field between the strips is chosen as the unknown.
Alternatively, in the case of the obstacle formulation, where
current on the strip is the unknown, the coupling matrix
has the form of an admittance matrix. In addition to these
two formulations there are two possible wave polarizations,
transverse electric (TE), and transverse magnetic (TM), so that
four combinations can be made. In each of these combinations,
the coupling matrix elements are different, but are always
related to an integral over the grating unit cell of an unknown
function which is to be found from an integral equation.
This integral equation has one particular form for the TM-
obstacle and TE-aperture cases, and a different form for the
TM-aperture and TE-obstacle cases. An approximate small-
argument solution for each of the four possible cases was
given in [2].

A novel rigorous solution of the integral equation for
the cases of TM-obstacle and TE-aperture formulations was
proposed in [3]. The method of the solution was to reduce
the integral equation for these two formulations to a singular
Cauchy-type integral equation, which has a known solution.
From this, the coupling matrix elements were found in the
form of double integrals that have to be evaluated numerically.
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Fig. 1. A planar periodic single-strip metal grating at a dielectric interface.
A plane wave is incident at an angle. Both polarizations are considered.

In [4], the method of [3] is extended to the case of a double-
strip grating. Although the method is basically the same as for
a single-strip grating, it is mathematically more involved.

In this paper we use the multimode network representation
derived in [1], for the problem of TE or TM plane wave
scattering from a planar periodic single-strip grating at a
dielectric interface. However, to find the coupling matrix
elements the alternative approach is chosen, i.e. the starting
integral equation is the one for TE-obstacle and TM-aperture
formulations. It is a Fredholm-type equation of the first kind,
whose kernel has a logarithmic singularity. It is known [5]
that an equation of this type has a closed-form solution. After
solving the integral equation the coupling matrix elements
Ay are obtained in a simple analytical form. Therefore, no
numerical integration is needed, as opposed to [3].

To check the validity of this approach some computations
have been carried out and the results are compared to those
of [3].

II. THE EQUIVALENT NETWORK REPRESENTATION
AND THE CORRESPONDING INTEGRAL EQUATION

Geometry of the problem under consideration is shown in
Fig. 1. A plane wave is incident at an angle # upon a planar
periodic zero-thickness single-strip grating at a dielectric inter-
face. The grating has period p, the distance between the strips
is a, and the parameters of media (1) and (2) are 6(1),[1,7(})
and e ,u&z) respectively. The polarization can be either TE
or TM to z. The rigorous equivalent networks, derived in [1]
for the cases of TE-obstacle and TM-aperture formulations are

shown in Figs. 2 and 3 respectively. The quantities in these
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Ym,n

Fig. 2. The rigorous equivalent network for the case of TE-obstacle formu-
lation.

Zmn

Fig. 3. The rigorous equivalent network for the case of TM-aperture for-
mulation.

figures are [1}
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The coupling matrix elements A,,, (representing admittances
Y,n in the case of TE-obstacle formulation, and impedances
Zmn in the case of TM-aperture formulation) are to be found
from

2mmn
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The unknown function f,(z) which appears in (1) satisfies
the following integral equation
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for TE-obstacle formulation

)
( )) for TM-aperture formulation
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In (1) and (2) b = o for the TM-aperture formulation (the
origin is in the center of the aperture), and b = p — a in the
case of TE-obstacle formulation (the origin in Fig. 1 is then
shifted to the center of the strip).

III. SOLUTION OF THE INTEGRAL EQUATION AND THE EXPLICIT
EXPRESSIONS FOR THE COUPLING MATRIX ELEMENTS
By using the formula

=\ cos(mz) 1 1
Z m =In 2|sin(z/2)| =In 2sin(|z|/2)

m=1

which is valid for 0< z < 2m, (2) can be rewritten as

2nmw

+8/2 / 1 / ;
2B/ fnZ V) ———d =77 %, (3)
—b/2 &) sinﬂz;—zL

A change of variables

VR S S 4
T2 P2
puts (3) into the following form
+AF 1 1 d
n ! T E_frl ' = n 4
/. (€ = pn(© @
where
_Br, (p€
R =221, (5) ®
Pn(€) = 77" ©6)
A= W—b @
p

Equation (4) is a Fredholm-type integral equation of the first
kind whose kernel has a logarithmic singularity. It is known
[5] that an equation of this type has a closed-form solution

S G S
272 Tnsin(A/2) /eost — cosA
<[ o) 2D e
- #—ﬁv.p.
<[ e

where the symbol v.p. stands for the principal value.

The substitution of ¢, (£) from (6) into (8), and the sub-
sequent evaluation of the integrals (which is given in the
appendix) leads to

Fo() = — 1 1 cos(£/2)
" 27+/2 Insin(A/2)-1/cos€ — cosA

n 1
X (Pp(u) + Pp_1(w)) + o3 Joot —eosd

-3 Pnp(W)eE@H g < 1
x{ P=0 ),
p=0
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Fig. 4. The transmitted power in the lowest (n =0) mode versus the relative
period for the case of TE-incidence. The parameters are taken to be: a/p =

0.5,6 =15°, 67(?) = 2 and 5£1> = ,u(rl) = ,19 = 1. The network used is
the one shown in Fig. 2.

Here, P are the Legendre polynomials, and pj, are related to
the Legendre polynomials and are given in the appendix. The
argument of P, and pj is u = cos A. Note that the second
integral in (8) is equal to zero for n = 0.

Now, the coupling matrix elements can be obtained as
follows: First, make a change of variables in (1) and (2)

wz/p=¢§

Then, taking into account (5) and (7)
1 /A

Amn

- Jjmg
3 _2B _AFn(g)e d&

Substituting here the function F,(€) from (9), and using the
Dirichlet formula [6] for the Legendre polynomials

V2 (8 erntl/2e g,
V2 [% cos(n +1/2)p dp
B 7/0 V/cosp — cosh

P, (cosf) =

(10)

and the relation [6]
Pk(u) = P_k_l(u)
one obtains the final expression for the coefficients A,, ,,

a = L Eulw) + B (0)) (P () + Pra1(u))
n 41nsin(A/2)

' 2B

- Zop—n—p(u)Pm-Fp(u) n< -1
p:

ZO Pr—p () P p (1) n=>1
p:

+n

(11)

Thus, the coupling matrix elements are found in a simple
explicit analytical form.
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Fig. 5. Same as Fig. 4 but for TM-incidence. The network used is the one
from Fig. 3.

IV. NUMERICAL RESULTS

In order to check the validity of this approach to plane
wave scattering from a planar periodic single-strip grating at
a dielectric interface, some numerical computations have been
carried out.

The transmitted power in the lowest (n = 0) mode versus
the relative grating period p/ Ao, for the case of TE-incidence
is shown in Fig. 4. The relevant network is the one in Fig. 2,
and the parameters from Fig. 1 have the following values: § =
15%a/p = 0.5,69) = 2 and e,(nl) = u&l) = p,?(?) = 1.

Fig. 5 shows the transmitted power in the lowest mode
versus the relative period in the case of TM-incidence,with
the same parameter values. The equivalent network used is
shown in Fig. 3.

In these computations modes of order up to £6 have been
included. As expected, the results are identical to those in [3].
The corresponding curves are indistinguishable.

V. CONCLUSION

Starting from the multimode network representations for
the problem of plane wave scattering from a planar peri-
odic single-strip zero-thickness metal grating at a dielectric
interface, new simple explicit expressions for the coupling
matrix elements have been obtained. Therefore, no numerical
integration is needed to obtain values of these elements.
The relevant integral equation to solve was a Fredholm-type
equation whose kernel has a logarithmic singularity. A closed-
form solution for this equation is presented.

APPENDIX

In this appendix we evaluate the two integrals appearing in
(8). The first one is given by

e cos(¢//2) dE' n
oot —cosd |~ 3 InleosA) + Pry(cosd)).
(A1)

In deriving (A1) the Dirichlet formula (10) and the trigono-
metric identity cosacosb = (1/2)(cos(a + b) + cos(a — b))
were used.
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The other integral in (8) which is understood in the sense
of principal value can be evaluated by means of residues from
complex function theory.

First, the sine and cosine terms under the integral sign
are transformed by using Euler’s formula and a change of
variables

e =z, el =z (A2)
is made to give
V.p./ —jne=in¢’ \/Ec,osf’ — cosA it
—A sint—=
= —jm/i\/z_ov.p. vl ) 4z (A3)

Z'n—f—l(

where o = e/4 and * implies complex conjugate value. The
contour of integration I is the arc of the unit circle |z| =
1 between the points z = o* and z = «. The square root
function is a two-valued function with two branch points
z = o and z = «*. By making a cut along the unit circle
between the branch points this function becomes analytical
and single-valued, the branch being specified by the condition
w(0) = +1. The contour of integration I' goes along the inner
lip of the cut. Let I be the closed contour going along the
inner and outer lips of the cut in the clockwise direction. Then,
the integral along T is equal to one half of the integral along I,
since the square root changes sign on the outer lip of the cut.
But, the integral along the closed contour I can be evaluated
by means of the residues at the two singular points z = 0 and
2z = oo. Therefore, (A.3) can be written as

—jne~in¢'\JcosE — cosA .,
v.p. d
P /—A sin&54 ¢

= _jn\/ﬁ\/%%ij(Resf(O) + Res f(00))

(A4)

where f(z) is the function under the integral sign on the
right-hand side of (A3).

To find the residues at z = 0 and z = oo the function f(z)
has to be developed into the Laurent series in the vicinity of
these two points, i.e. for |z| < |z9| = 1 and for |z| > |20 = 1.

First, note that the function [(z — a)(2z — a*)]7/2 where
a = e/ is the generating function for the Legendre
polynomials [6]

[(z — a)(z — o))" = Pa(cosd)z™, 2] <1.
n=0

Inverting the power series in the last relation gives

Z pn(cosd)z",

n=0

1/2

[(z—a)(z— |2 <1 (A5)

where

po(cosA) = 1, p1(cosA) = —cosA
P, (cosA) — 2cosAP,,_1(cosA)
+ P, _s(cosA), n > 2.

pn(cosd) =
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In the case |z| > 1 one may replace z in (AS5) by 1/z. The
result is

[(z—a)(z = a®)|Y? = -2 an cosd)z™™, |z > 1.

(A6)
The minus sign comes from the fact that the square root
changes sign across the cut. Also

R _—p—1
— > PP, |2 < 1

o0
> zgz—p—17

p=0

(z—20)" ' = (A7)

2] > 1

Now the Laurent expansions of the function f(z) follow from
(A5), (A6) and (A7)

G-z —a")

zn+1(z _ 2'0)

f(z) =

= 0
g 2 %90 2 ) pelcosd)zt, [z <1
_ p=0 k=0
- = = :
— g 2 27 PN Y pr(cosA)zTF, [z > 1
p=0 k=0
(A8)

The residue of the function f(z) at z = 0 is the coefficient of
! in the Laurent series (A8) for |z < 1. It is

0, n< -1
n
— 3 pnplcosA)zgP™l, n >0
p=0

Resf(0) = (A9)

The residue of f(z) at the point z = oo is the coefficient of
! in the Laurent series (A.8) for |z| > 1 with the opposite
sign

Resf(o0) = (A10)

Finally, (9) is obtained from (8), (Al), (A2), (A4), (A9) and
(A10).
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